Drought tolerance of selected Eragrostis species correlates with leaf tensile properties.

نویسندگان

  • R A Balsamo
  • C Vander Willigen
  • A M Bauer
  • J Farrant
چکیده

BACKGROUND AND AIMS Previous studies on grass leaf tensile properties (behaviour during mechanical stress) have focused on agricultural applications such as resistance to trampling and palatability; no investigations have directly addressed mechanical properties during water stress, and hence these are the subject of this study. METHODS Critical (lethal) relative water contents were determined for three species of grass in the genus Eragrostis varying in their tolerance to drought. Measurements were taken for leaf tensile strength, elastic modulus, toughness and failure load under different conditions of hydration, and light microscopy and histochemical analyses were undertaken. KEY RESULTS Leaf tensile strength of fully hydrated leaves for the drought-intolerant E. capensis, the moderately drought-tolerant E. tef and the drought-tolerant E. curvula correlated well with drought tolerance (critical relative water content). Eragrostis curvula had higher tensile strength values than E. tef, which in turn had higher values than E. capensis. Measurements on the drought-tolerant grass E. curvula when fully hydrated and when dried to below its turgor loss point showed that tensile strength, toughness and the elastic modulus all increased under conditions of turgor loss, while the failure load remained unchanged. Additional tests of 100 mm segments along the lamina of E. curvula showed that tensile strength, toughness and the elastic modulus all decreased with distance from the base of the lamina, while again the failure load was unaffected. This decrease in mechanical parameters correlated with a reduction in the size of the vascular bundles and the amount of lignification, as viewed in lamina cross-sections. CONCLUSIONS The results confirm that leaf mechanical properties are affected by both water status and position along the lamina, and suggest a positive correlation between leaf internal architecture, tensile strength, cell wall chemistry and tolerance to dehydration for grasses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance.

Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with fu...

متن کامل

Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes.

Spatial patterns in trait variation reflect underlying community assembly processes, allowing us to test hypotheses about their trait and environmental drivers by identifying the strongest correlates of characteristic spatial patterns. For 43 evergreen tree species (> 1 cm dbh) in a 20-ha seasonal tropical rainforest plot in Xishuangbanna, China, we compared the ability of drought-tolerance tra...

متن کامل

Causes of variation in leaf-level drought tolerance within an Amazonian forest

Amazonian tree communities have already been seriously impacted by extreme natural droughts, and intense droughts are predicted to increase in frequency. However, our current knowledge of Amazonian tree species’ responses to water stress remains limited, as plant trait databases include few drought tolerance traits, impeding the application and predictive power of models. Here we explored how l...

متن کامل

Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.

Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions rang...

متن کامل

Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora?

Leaf-level determinants of species environmental stress tolerance are still poorly understood. Here, we explored dependencies of species shade (T(shade)) and drought (T(drought)) tolerance scores on key leaf structural and functional traits in 339 Northern Hemisphere temperate woody species. In general, T(shade) was positively associated with leaf life-span (L(L)), and negatively with leaf dry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 97 6  شماره 

صفحات  -

تاریخ انتشار 2006